Supporting Information

Dual Probe Sensors Using Atomically Precise Noble Metal Clusters

Vidhya Subramanian^{† Ψ}, Sanjoy Jena[‡], Debasmita Ghosh[†], Madhuri Jash[†], Ananya Baksi[†], Debdutta Ray[‡] and Thalappil Pradeep^{*†}

[†] DST Unit of Nanoscience (DSTUNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, India – 600036

 $^{\Psi}$ Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India – 600036

[‡] Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India – 600036

Contents

TEM of the calcined fibers at different magnifications	52
SEM of the fibers: a) before carbonization and b) after carbonization S	S3
I-V studies of fiber coated with BSA	S4
I-V studies of cluster coated fiber	S5
I-V studies of cluster coated fiber at different time intervals	S 6
Photoluminescence profile of Au@BSA cluster after addition of analyte	S7 · S8
Details of the calculation for TNT vapor exposure experiments	- S9
I-V studies of cluster coated fiber	· S10
Studies of exposure to DNT	- S11
Schematic representing the formation of Meisenheimer complex on CNTs@SiO₂@Au@BSA fibers	· S12

S-1. Supporting Information 1

Figure S-1. TEM of the calcined fibers at different magnifications.

S-2. Supporting Information 2

Figure S-2. SEM of the fibers: a) before carbonization and b) after carbonization.

Figure S-3. I-V studies of fiber coated with BSA.

Figure S-4. I-V studies of cluster coated fiber.

S-5. Supporting Information 5

Figure S-5. I-V studies of cluster coated fiber at different time intervals.

Figure S-6. Photoluminescence profile of Au@BSA cluster after addition of 100 μ L of 100 ppt TNT to 2 mL of Au@BSA cluster solution.

S-7. Supporting Information 7

Details of the calculation for solution based fluorescence experiments

For the fluorescence experiments, 2.5 μ L of water is drop casted onto the slide containing and the measurements were done. The area of droplet measured is 8.34 x 10⁻⁶ m². 1 ppt of analyte= 4.403 x 10⁻¹² M TNT No. of molecules per litre = 4.403 x 10⁻¹² x 6.023 x 10²³ = 2.652 x 10¹² Hence, 2.5 μ L of water droplet contains = 2.5 x 10⁻⁶ x 2.652 x 10¹² = 6.625 x 10⁶ TNT molecules Surface area of a fiber = 2π rh Fiber radius = 600 nm Fiber length = 40 μ m = 2 x 3.14 x 6 x 10⁻⁷ x 4 x 10⁻⁵ m² = 1.5 x 10⁻¹⁰ m² 8.34 x 10⁻⁶ m² (2.5 μ L of water droplet) contains 6.625 x 10⁶ TNT molecules Hence, 1.5 x 10⁻¹⁰ m² (single fiber) contains = 1.5 x 10⁻¹⁰ m² x 6.625 x 10⁶ / 8.34 x 10⁻⁶ = 119 TNT molecules

S-8. Supporting Information 8

Details of the calculation for TNT vapor exposure experiments

TNT powder was placed in a beaker as shown in Figure 4. Beaker, height = 3.5×10^{-3} m Radius = 1.1×10^{-3} m Volume of the beaker = $\pi r^2 h$ = 13.297×10^{-9} m³ Surface area of a fiber = $2\pi rh$ Fiber length = 1 mm = $2 \times 3.14 \times 600 \times 10^{-9} \times 1 \times 10^{-3}$ = 3.768×10^{-9} m²

Fiber radius = 600 nm

To calculate the number of TNT molecules in the beaker at 343.15 K

Gas equation, PV = nRTHere, P is taken as the vapor pressure, Hence, P = 4.24 Pa (From literature), V = 13.297 x 10⁻⁹ m³ R = 8.314, T = 343.15 K

Therefore,

$$n = 4.24 \text{ x } 13.297 \text{ x } 10^{-9} / 8.314 \text{ x } 343.15$$
$$= 1.97 \text{ x } 10^{-13}$$

Hence,

Number of molecules present in the beaker = $1.97 \times 10^{-13} \times 6.023 \times 10^{23}$

$$= 1.19 \times 10^{12}$$

$$= \sim 10^{-1}$$
 TNT molecules

To calculate the number of TNT molecules for monolayer coverage on the fiber Size of TNT molecule, d = 1 nm

Number of molecules required for mono layer coverage = Surface area / πr^2

=
$$3.768 \times 10^{-9} / 3.14 \times (0.5 \times 10^{-9})^2$$

= 4.8×10^9 molecules of TNT

4.8 x 10⁹ molecules of TNT are required for a uniform monolayer coverage for 1 mm length fiber.

S-9. Supporting Information 9

Figure S-9. I-V studies of cluster coated fiber.

S-10. Supporting Information 10

Figure S-10. Flourescence image of the fibers, a1) before exposure to DNT, a2) after exposure to DNT for 30s, b) I-V studies of cluster coated fiber exposed to DNT.

S-11. Supporting Information 11

Figure S-11. Schematic representing the formation of Meisenheimer complex between the nitro groups of TNTand the free amino groups of BSA of the Au@BSA cluster immobilised on CNTs@SiO₂ fibers.